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Abstract
In GWAS of imaging phenotypes (e.g., by the ENIGMA and CHARGE consortia), the growing number of phenotypes con-
sidered presents a statistical challenge that other fields are not experiencing (e.g. psychiatry and the Psychiatric Genetics 
Consortium). However, the multivariate nature of MRI measurements may also be an advantage as many of the MRI pheno-
types are correlated and multivariate methods could be considered. Here, we compared the statistical power of a multivariate 
GWAS versus the current univariate approach, which consists of multiple univariate analyses. To do so, we used results from 
twin models to estimate pertinent vectors of SNP effect sizes on brain imaging phenotypes, as well as the residual correlation 
matrices, necessary to estimate analytically the statistical power. We showed that for subcortical structure volumes and hip-
pocampal subfields, a multivariate GWAS yields similar statistical power to the current univariate approach. Our analytical 
approach is as accurate but ~ 1000 times faster than simulations and we have released the code to facilitate the investigation 
of other scenarios, may they be outside the field of imaging genetics.
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Introduction

The ENIGMA and CHARGE initiatives have been out-
standing in uniting researchers from all over the world 
to perform large scale GWAS and identifying genetic 
variants contributing to head size (intracranial volume, 
ICV) and volumes of subcortical structures (Thompson 
et al. 2014). The sample size reached since the consor-
tia began makes them the most powerful meta-analytic 
samples to study the genetics of the brain [see (Strike 
et al. 2015) for a review]. For example, the ENIGMA 
sample grew from ~ 8 k scans in the first GWAS on ICV 
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and hippocampal volume (Stein et al. 2012), to ~ 40 k in 
the most recent analyses (combined with CHARGE and 
UK biobank) (Hibar et al. 2015; Adams et al. 2016) and 
we can expect the sample size to increase again in future 
analyses with a greater contribution from the biobanks 
(e.g. UK (Miller et al. 2016) and German biobanks (Gre-
iser et al. 2014; Schram et al. 2014; Breteler et al. 2014). 
At the same time, the number of phenotypes considered 
has also increased (from 2 to 7 subcortical volumes to 
68 cortical measurements) and we can expect even more 
phenotypes to be included in future projects (e.g. DTI or 
voxel-wise cortical morphology).

This raises the question of statistical power of GWAS 
analyses of magnetic resonance imaging (MRI) derived 
phenotypes, as the number of tests increases quickly. This 
led us to compare the statistical power of univariate and 
multivariate GWAS using realistic scenarios, to illustrate 
the potential and limitations of each approach.

Multivariate GWAS analyses often consist of a series 
of MANOVAs, which results in only one test of associa-
tion per SNP, over all outcome variables considered. Such 
tests have been implemented in popular GWAS software 
such as PLINK (Ferreira and Purcell 2009; Purcell et al. 
2007). Other multivariate approaches include MultiPhen 
(O’Reilly et al. 2012) that uses likelihood ratio test, and 
GEMMA, which further allows the modelling of partici-
pant relatedness (Zhou and Stephens 2014). In addition, 
Bayesian methods are available (Marchini et al. 2007; 
Stephens 2013), but controlling for familial or cryptic 
relatedness in these models may not be straightforward. 
Finally, Medland et al., (Medland and Neale 2010) pro-
posed an integrated model that allows testing SNP effects 
on the common factor as well as on variable-specific fac-
tors, but it remains unclear which factors to test and how 
to handle the correction for multiple testing. The statisti-
cal power of the different multivariate approaches (see 
Supplementary Section 1 for a quick review) depends on 
the covariance structure of the phenotypes (van der Sluis 
et al. 2013; Galesloot et al. 2014; Cole et al. 1994; Minica 
et al. 2010), and, as nicely summarised by Zhou and Ste-
phens (2014): “[…] in a GWAS setting, no single test 
will be the most powerful in detecting the many different 
types of genetic effects that could occur. It is possible to 
manufacture simulations so that any given test is most 
powerful”.

Here, we aimed to calculate the statistical power of 
real-case multivariate GWAS of brain phenotypes, by inte-
grating genetic and environmental correlations estimated 
from twin data. We chose to focus on MANOVA models as 
they are the direct multivariate equivalent of the univariate 
GWAS approach. In addition, unlike any other multivariate 
method, we can calculate the power analytically and avoid 
time-consuming simulations (Muller and Peterson 1984).

Materials and methods

MANOVA power calculation

Power calculation of multivariate linear models such as 
MANOVA may be seen as an extension of the power cal-
culation in the univariate case (Muller and Peterson 1984). 
However, unlike the univariate case, we can choose between 
four test statistics: Roy’s largest root (RLR), Hotelling-
Lawley trace (HLT), Wilks’ lambda (WL) [implemented in 
PLINK (Ferreira and Purcell 2009)] and Pillai-Bartlett trace 
(PB). We focused on the last three as they show the highest 
sensitivity (Olson 1974, 1976, 1979; Stevens 1979, 1980; 
Pillai and Jayachandran 1967) and can be well approxi-
mated by an F-distribution (Muller and Peterson 1984; 
Pillai 1956; Nagarsenker and Suniaga 1983; Rao 1973). 
Multivariate power calculations require specification of the 
sample size (N), design (X, SNP and covariates), the vec-
tor of effect sizes (β, effects of SNP on phenotypes) and a 
matrix of residual variance–covariance of the phenotypes (Σ, 
“residual” means here that the SNP effect has been removed) 
(Muller and Peterson 1984). From there, power can be esti-
mated using non-central F-approximation whose degrees of 
freedom depend on the choice of test-statistic (Muller and 
Peterson 1984).

To obtain realistic β and Σ for the set of brain phe-
notypes considered, we used a Cholesky decomposition 
of a multivariate twin model (Fig. 1). This is arguably 
one of the most general multivariate models and allows 

Fig. 1   General Cholesky decomposition of the genetic and environ-
mental variance of the brain phenotypes. The p phenotypes are labels, 
P1 … Pp; we also model additive genetic (A) and environmental 
(E) sources of variance, with latent variables, A1 … Ap, E1 … Ep. 
In this model, all of the genetic variance is accounted for by the p 
additive genetic latent factors and the SNP can only affect one of the 
independent genetic factors (here, A2). All of the genetic and envi-
ronmental factors are independent
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as many independent genetic or environmental factors as 
phenotypes, while minimising the number of paths. In this 
model, all the genetic variance is accounted for by the p 
additive genetic latent factors and the SNP can only affect 
one of the independent genetic factors (e.g. Fig. 1). Using 
a twin sample, we can estimate the matrices of path coeffi-
cients a and e that describe the relationship between latent 
variables A, E and phenotypes P:

In the example below (Fig. 1), the SNP affects the latent 
factor A2: A2 = b × SNP + ε. Thus, our vector of effect size 
can be written as:

with a2 = (a22 … a2p) the path coefficients of the factor A2, 
estimated from the twin model, where SNP is the categori-
cal variable of the observed genotype at a particular locus 
(e.g., 0: genotype aa, 1: aA, 2: AA). We can then choose b 
based on the maximum path coefficient and the SNP minor 
allele frequency (MAF) so that we express the power as a 
function of maximal phenotypic variance explained ( R2 ) by 
the SNP, independently of the SNP MAF. For example, if 
a23 is the largest path coefficient (in absolute value) and we 
set that the SNP explains at most R2 of the variance of one 
trait, we can use:

with SD(SNP) =
√

2MAF (1 −MAF) , and a23 the standard-
ised path coefficient. Specifying the SNP effect size in terms 
of R2 (variance explained) simplifies the analysis as it inte-
grates the effect size b and the SNP MAF. Finally, we can 
calculate the residual phenotypic variance–covariance 
matrix Σ, using the path coefficients from which we have 
subtracted the SNP effect. We used the fact that 
cov (P) = a × t(a) + e × t(e) and that the phenotypic vari-
ance–covar iance  due  to  the  SNP ef fec t  i s 
cov

�

PSNP

�

=

√

R2

a23
× t(a2) × a2 . Thus, the residual vari-

ance–covariance matrix of phenotypes (after removing the 
SNP effect) is

As the estimated β and Σ are specific to the genetic 
additive factor on which the SNP loads (Fig. 1), we have 
to calculate the statistical power for each genetic factor. 
As the genetic factors are independent we aggregated the 
factor-specific power by taking the mean or the weighted 
mean (using the % of variance explained by each genetic 
factor as weights).

(1)P = aA + eE.

(2)β =
(

0, b × a22, b × a23, … , b × a2p
)

(3)b =

√

R2

SD (SNP) × a23

(4)cov
(

P−SNP

)

= a × t(a) + e × t(e) − cov
(

PSNP

)

Real case scenarios: subcortical volumes 
and hippocampal subfields

First, we considered seven subcortical volumes (summed 
over left and right hemisphere structures) processed using 
FreeSurfer 5.3 (Fischl 2012) using the ENIGMA protocols 
and QC (http://enigm​a.ini.usc.edu/proto​cols/imagi​ng-proto​
cols/). Then, we analysed volumetric data from 12 hip-
pocampal subfields segmented using FreeSurfer 6.0 (Iglesias 
et al. 2015).

We fitted multivariate twin models with Cholesky decom-
position in OpenMx (Boker et al. 2011) and extracted the 
standardised path coefficients to calculate the multivariate 
power. We calculated the power varying the sample size (up 
to N = 60,000) and the maximal SNP effect size (0.05–1% 
of variance explained).

For the univariate approach, we used a significance 
threshold of 5e−8/neff for univariate GWAS, with neff being 
the number of effectively independent phenotypes (Li and 
Ji 2005; Li et al. 2012), (code available at http://neuro​genet​
ics.qimrb​ergho​fer.edu.au/matSp​Dlite​/). Such an approach 
has been used in prior MRI GWAS (Hibar et al. 2015) to 
ensure a FWER < 5% without over-correcting when per-
forming tests over correlated variables. Here, we estimated 
neff to be six for the seven subcortical volumes (significance 
threshold of 8.3e−9) and 7 for the 12 hippocampal subfields 
(significance threshold of 7.1e−9), after regressing out all 
of the covariates (including ICV). For MANOVA power, we 
used the standard genome wide significance threshold for 
European populations (5e−8).

Multivariate twin modelling

We included 424 complete twin pairs (178 MZ, 246 DZ) 
with available volumes for the subcortical structures and 
hippocampal subfields. Participants included a slightly 
higher proportion of females (63.0%) and were on average 
21.9 years old at scanning (SD = 3.3, range 15–29). Miss-
ingness (after QC) was less than 1% in all the variables 
considered.

T1 weighted structural scans were collected as part of the 
QTIM study (de Zubicaray et al. 2008), with TR = 1500 ms, 
TE = 3.35 ms, TI = 700 ms, flip angle = 8°, 256 or 240 (coro-
nal or sagittal) slices, FOV = 240 mm, 256 × 256 × 256 (or 
256 × 256 × 240) matrix, slice thickness = 0.9 mm and voxel 
size 0.9 mm3.

Prior to twin modelling, age, age2, age3, sex, acquisition 
direction (coronal/sagittal), and ICV were regressed from 
the subcortical and hippocampal subfield volumes, and we 
used the residuals in the following analyses. Multivariate 
twin models were run in OpenMx (Boker et al. 2011) using 
Full Information Maximum Likelihood, which allows for 
missing observations.

http://enigma.ini.usc.edu/protocols/imaging-protocols/
http://enigma.ini.usc.edu/protocols/imaging-protocols/
http://neurogenetics.qimrberghofer.edu.au/matSpDlite/
http://neurogenetics.qimrberghofer.edu.au/matSpDlite/
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Supplementary Tables 1 and 2 report the estimated stand-
ardised path coefficients used in the power calculation. 
Using the path coefficients, one can calculate genetic and 
environmental correlations between the subcortical volumes 
or hippocampal subfields (Figs. 2, 3). The subcortical vol-
umes and hippocampal subfields are genetically correlated 
(rG values between 0.10 and 0.54 for subcortical volumes, 
− 0.22 and 0.86 for hippocampal subfields); this supports 
considering them in multivariate GWAS. In addition, the 
path coefficients indicate multiple independent sources of 
additive variance (large path coefficients outside of the first 
genetic factor), which suggests that a GWAS of the first PC 
would not capture all of the relevant information. These 
results are consistent with the genetic correlations previously 
reported (Renteria et al. 2014), even if our estimates are sys-
tematically lower, which we attribute to controlling for ICV.

Sensitivity of power calculation

In our power calculation, we used estimated parameters 
(path coefficients), which asks about the robustness of our 
results across the range of plausible path coefficients. We 
performed sensitivity analyses, varying the path coeffi-
cients in our power calculations to reflect the uncertainty 

in the estimation. Thus, we randomly drew path coef-
ficients values from their 95% confidence intervals and 
evaluated the impact of the new coefficients on our power 
calculation. We repeated this operation 100 times for 
each effect size, and visualised the uncertainty in power 
that results from the uncertainty in path coefficients. In 
addition, we checked if the power calculation remained 
the same after changing the order of the variables in the 
OpenMx model.

Next, we checked our analytical results against simu-
lated statistical power, for the two main scenarios consid-
ered. We expect highly similar estimates of power as the 
F approximations used in the analytical approach should 
be accurate (Muller and Peterson 1984). In addition, we 
checked that MANOVA power in the particular case of a 
single phenotype was equivalent to those from a univariate 
model. Finally, we reported the computing time required 
for simulations in comparison to our analytical approach.

Fig. 2   Genetic (above diagonal) 
and environmental (below) 
correlations between subcortical 
volumes. Colour and size of the 
coloured squares indicate the 
strength of the correlations. No 
thresholding was applied to the 
matrix based on significance or 
correlation strength
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Results

Multivariate versus univariate power

The statistical power of subcortical GWAS approaches is 
summarised in Fig. 4. The multivariate approach should 
be comparable or even slightly less powerful in identifying 
genome-wide significant variants. For example, the current 
ENIGMA sample (N ~ 30,000) would detect an association 
approximately four out of ten times (power = 0.38) with the 
univariate approach (for a SNP explaining 0.1% of the vari-
ance in any subcortical volume). For the same parameters, a 
multivariate approach should detect the association approxi-
mately three out of ten times. In other words, 80% statistical 
power would be achieved for a sample size of 48,000 in a 
multivariate analysis, compared to 43,000 in the univariate 
case.

Similarly, multivariate GWAS should lead to similar sta-
tistical power than the univariate approach using hippocam-
pal subfields (Fig. 5). For a SNP explaining 0.1% of the 
variance in the volume of one of the subfields, 80% power 
can be achieved with a sample of 46,000 using multivariate 
GWAS, against 44,000 in the univariate case.The choice of 
test statistic (HLT, WL or PB) did not impact the power 

calculation, consistent with prior research highlighting their 
equivalence in large samples (for N > 10 × p, with p the num-
ber of dependent variables) (Muller and Peterson 1984).

The different weighting of factor-wise power in the 
multivariate calculation resulted in similar conclusions for 
the subcortical volumes scenario (Supplementary Figs. 1, 
2). However, for the hippocampal subfields, the power 
of each genetic factor varied greatly and the multivariate 
power depended on the weights used to combine the factors 
(Fig. 6, Supplementary Figs. 3, 4, 5). Thus, the MANOVA 
does worse than in the univariate approach at detecting SNPs 
associated with the first additive genetic factor, but may pro-
vide more powerful at identifying SNPs influencing only 
a subset of hippocampus subfields (Fig. 6, Supplementary 
Fig. 5).

Sensitivity analysis

To evaluate the effect of uncertainty around path estimates 
on our power calculation, we re-ran the analysis 100 times 
randomly drawing path coefficients from their 95% confi-
dence intervals. Variations in path coefficients resulted in 
small variations of multivariate power, over a hundred itera-
tions (Supplementary Figs. 6, 7), with no consequences on 

Fig. 3   Genetic (above diagonal) 
and environmental (below) cor-
relations between hippocampus 
subfields. Colour and size of the 
coloured squares indicate the 
strength of the correlation. No 
thresholding was applied to the 
matrix based on significance 
or correlation strength. GC_
ML_DG: Granule Cells of the 
Molecular Layer of the Dentate 
Gyrus. CA1-4: Cornu Ammonis 
areas 1–4. CA2 and CA3 are 
merged, as FreeSurfer 6.0 does 
not differentiate between them 
(Iglesias et al. 2015). HATA: 
Hippocampus-amygdala transi-
tion area
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Fig. 4   Statistical power as a function of sample size for multivariate 
(solid lines) and univariate (dashed/dotted lines) GWAS on subcor-
tical volumes. For all effect sizes and sample sizes, the multivariate 
approach confers greater statistical power than univariate approach. 

Multivariate power presented here corresponds to the variance-
weighted power of genetic factor. Simply averaging the power across 
all factors did not change the conclusions (Supplementary Fig. 1)

Fig. 5   Statistical power as a function of sample size for multivari-
ate (plain lines) and univariate (dashed lines) GWAS on hippocam-
pus subfields. For all effect sizes and sample sizes, the multivariate 
approach confers greater statistical power than univariate approach. 

Multivariate power presented here corresponds to the variance-
weighted power of genetic factors. Averaging the power across factors 
suggested a possible increase of power (Supplementary Fig. 3, Fig. 6)
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the conclusions of this study. In addition, varying the order 
of the variables in the OpenMx modelling did not change the 
power estimation (Supplementary Figs. 8, 9).

We confirmed that our analytical derivations were cor-
rect by comparing the MANOVA power to those obtained 
through simulations (Supplementary Figs. 10, 11, 12). We 
further confirmed that reducing the MANOVA dimension 
to one phenotype yielded the same statistical power as of a 
univariate model (Supplementary Fig. 13).

As expected, relying on simulation to estimate statistical 
power was more time consuming. For our seven subcortical 
volumes it took 0.47 s to calculate one power curve analyti-
cally versus 21 min using simulations. For the twelve hip-
pocampal subfields, the difference was even greater: 0.83 s 
analytically versus 1 h 2 min using simulations.

Discussion and conclusions

Here, we describe a method to calculate multivariate power 
of GWAS of real-case scenarios using the outputs from 
a multivariate twin modelling. Our approach is fast (less 
than a second), accurate (Supplementary Figs. 10, 11, 12) 
and computationally economical, as it does not rely on 
simulation but on analytical power calculation using the 
F-approximation (Muller and Peterson 1984). Thus, we 

could efficiently estimate the power of very large GWAS 
studies (N = 60,000+), which are realistic sample sizes in 
the field of imaging genetics nowadays. Our method pro-
vides a power estimate that corresponds to the multivari-
ate test implemented in PLINK (Ferreira and Purcell 2009; 
Purcell et al. 2007) and which is equivalent to the one used 
in GEMMA (Zhou and Stephens 2014) (when working on 
related participants) (O’Reilly et al. 2012; van der Sluis et al. 
2013; Galesloot et al. 2014).

Using this method, we showed that performing a mul-
tivariate GWAS of the volumes for both the subcorti-
cal structures and hippocampal subfields confers overall 
similar power to the standard univariate approach. How-
ever, the statistical power may vary greatly depending on 
the additive genetic source of variance considered (Fig. 6, 
Supplementary Figs. 2, 4). For example, in both scenarios, 
the multivariate power was the lowest for SNPs associated 
with the first additive genetic factor (that contributes to all 
phenotypes), consistent with previous bivariate simulations 
(Stephens 2013). For the hippocampal subfields, multivari-
ate GWAS may boost power of detecting SNPs associated 
with specific subsets of phenotypes (Fig. 6, Supplementary 
Fig. 5). Indeed, eight additive genetic factors (accounting for 
44% of the total additive genetic variance) showed greater 
power than the univariate approach while four returned 
similar or lower power. For each additive genetic factor, we 

Fig. 6   Power of each genetic factor (R2 = 0.001) for a multivariate 
GWAS of hippocampal subfield volumes. The power for each genetic 
factor is represented in blue. For comparison, we plotted the univari-
ate power (controlling for multiple testing) in black (triangles), the 
multivariate MANOVA power assuming that all factors are as likely 

to exhibit a SNP effect (grey line), the MANOVA power weighting 
factors by the total phenotypic variance they explain (black line, cir-
cles). See Supplementary Fig.  5 for a brief comparison of the SNP 
effect from each additive genetic factor
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have described the SNP effects on the hippocampus sub-
fields (Supplementary Fig. 6) but more work is needed to 
understand where the increase/decrease of power comes 
from. Thus, if overall MANOVA and univariate show simi-
lar statistical power, they could lead to the discovery of dif-
ferent genetic variants.

Our results are limited to the two scenarios considered 
and it would be of interest to extend our analyses, for exam-
ple considering left and right volumes (instead of the aver-
age between left and right), cortical, or voxel-wise measure-
ments. We have released the code used in this analysis to 
all researchers interested (https​://bapti​stecd​.githu​b.io/Power​
Multi​varia​teGWA​S/). It may be applied to variables and sce-
narios outside the field of brain imaging.

There are some limitations to this study, the main one 
being that the power calculation relies on estimated param-
eters (standardised path coefficients from twin modelling). 
However, we showed that the uncertainty around path coef-
ficients resulted in limited variability in the power calcu-
lation, and did not change the conclusions of the analysis 
(Supplementary Figs. 6, 7). In absence of twin data, path 
coefficients may be derived from matrices of genetic cor-
relations estimated from SNPs as well as phenotypic cor-
relations. Another limitation concerns the stability of our 
results when using a different twin sample, possibly with 
different demographic characteristics. We did not have the 
data to investigate this limitation. Furthermore, our conclu-
sions are limited to the MANOVA GWAS and there may be 
another competing multivariate approach that could yield 
greater power. We recommend to the interested readers the 
simulation framework of Porter and O’Reilly (Porter and 
O’Reilly 2017), that allows comparing the power across the 
different multivariate tests.

More generally, there are a few caveats when perform-
ing multivariate GWAS. Firstly, the effect of the SNP is not 
specific to one variable but rather the set of variables con-
sidered. Thus, the discovery analysis would identify SNPs 
associated with hippocampal volume in general, without 
testing which subfields the SNP has an effect on. This could 
be overcome by performing univariate GWAS follow-ups of 
the multivariate hits to more accurately identify the location 
of the SNP effect. Another potential consideration is the 
computing time of multivariate models, compared to uni-
variate ones. Simulation reveals that multivariate GWAS 
using PLINK would be faster than running sequentially 
multiple univariate GWAS [see Supplementary Table 3 in 
(Porter and O’Reilly 2017)]. For multivariate GWAS using 
mixed models, GEMMA is currently a viable approach for 
analyses limited to 50,000 participants and ~ 10 phenotypes 
(Zhou and Stephens 2014). Both programs require little to 
no reformatting of the data, compared to univariate analyses.

To conclude, more work is needed to identify multivari-
ate GWAS scenarios in imaging genetics that would yield 

greater power than standard univariate analyses. Our code 
allows to efficiently calculate such multivariate power, thus 
to quickly evaluate new scenarios without time and resource 
consuming simulations.
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